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Abstract
We study the evolution of geometric invariants for equations such as the Davey–
Stewartson and Novikov–Veselov equations.

PACS numbers: 02.30.−f, 02.40.−k

1. Introduction

A large class of evolution equations in two space, (x, y), and one time, t, dimension arise as
compatibility conditions on the (x, y, t)-dependent coefficients in linear differential operators
(Lax operators). Examples include the Kadomtsev–Petviashvili, Davey–Stewartson and
Novikov–Veselov (NV) equations. Thus the linear operators

L =
(
∂x q

−1 ∂y

)
and

M =
(
∂3
Y − 3UyY ∂Y + 3UyyY 3qY ∂Y − 3qyY − 3(Uxx − Uyy)q

3(Uxx − Uyy) ∂3
Y + 3UxY ∂Y − 3qY

)
where Uxy = q and ∂Y = ∂x − ∂y , are associated in this way with the NV-equation

qt = qxxx − qyyy + 3(qUxx)x − 3(qUyy)y.

Here the subscripts denote derivatives.
The form the equation takes is, of course, dependent upon the form of the Lax operators.

This form corresponds to a specific choice of ‘gauge’ because neither the linearity nor
compatibility of L and M is compromised by the transformation L → Lg = g−1Lg, where g
is a 2×2 matrix of arbitrary functions. (In order to preserve the leading order, differential part
of L it is necessary that g be diagonal.) On the other hand the forms of L and M chosen above
are not of the most obviously general kind. In the case of L the general form for a hyperbolic
linear operator can be taken to be

L =
(
∂x + h11 h12

h21 ∂y + h22

)
(1)
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the hij being real functions of x, y and t. Starting with such a general form one might construct
the associated M and write down evolution equations for the hij but this would again mean
ignoring the role of gauge transformations and obscure the geometrical meaning of these
evolution equations. Instead one should construct evolution equations for the gauge invariant
quantities [3, 4]

(12) = h12h21 (2)

[12] = h11x − h22y +
1

2
log

(
h12

h21

)
xy

. (3)

The notation for these quantities is borrowed from tensor conventions and is intended to
convey the symmetry (respectively antisymmetry) of these quantities under permutations of
the labels 1 and 2.

These independent quantities label the equivalence classes under gauge transformations
because, in fact, L and L′ are gauge equivalent if and only if their respective invariants
coincide: (12) = (12)′, [12] = [12]′. In the case of the Novikov–Veselov equation above, we
see that (12) = q and [12] = 1

2 log qxy representing an invariant differential constraint,

2[12](12)2 = (12)(12)xy − (12)x(12)y. (4)

The evolution equations for the gauge invariants (12) and [12] with any attendant
differential constraints on the invariants, we will call, in this paper, the geometrically invariant
form of the evolution equation.

One might ask what such a form serves. Part of the answer has to be that in the
transformation theory of such equations (Darboux, Moutard, Bäcklund, etc) it is the invariants
which most simply express the transformations and, indeed, from which they are most easily
derived. In addition, it is arguable that evolution equations should be classified according to
a set of invariant forms. In this paper we will calculate invariants for linear 2 × 2 matrix
operators of orders 2 and 3 (AKNS Lax operators) and give results on the associated evolution
equations in geometrically invariant form. The calculations underlying these forms are by no
means short and we do not propose to present them since they are in principle routine. We
shall also discuss the compatibility of these flows with Laplace transformations.

The study of these invariants, their generalizations and transformations, is both classical
[4] and modern. They occur in geometry [1, 8, 9, 12] and the theory of hydrodynamic
Hamiltonian systems [7]. For a recent review of their application to the classification of
integrable equations see [13]. Within the context of integrable systems it is entirely natural to
consider the time evolution of these invariants.

2. Invariant forms of second-order equations

The calculation of the above invariants (12) and [12] for the first-order Lax operator (1) is
classical and simple. Rather than calculate invariants for quite general higher order operators
directly we will restrict attention to those of interest to evolution equations, namely those
which commute with (1). Let ∂t − M be the general form of the commuting matrix operator

Lt + [L,M] = 0

of degree two in ∂x and ∂y . This system will correspond to the second member of the (2 + 1)-
dimensional AKNS hierarchy. As is customary for equations in Sato-like hierarchies [10] we
take the operator parts of M to be expressible solely in terms of ∂Y = ∂x − ∂y so that

M =
(
∂2
Y + f11∂Y + k11 2h12∂Y + k12

2h21∂Y + k21 −∂2
Y + f22∂Y + k22

)
(5)
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and the resulting evolution equations are

h12t = h12YY + 2h12h22Y + h12Y f11 + h12(k11 − k22) + (h22 − h11)k12 − k12x (6)

h21t = −h21YY + 2h21h11Y + h21Y f22 + h21(k22 − k11) + (h11 − h22)k21 − k21y (7)

h11t = h11YY + 2h12h21Y + h11Y f11 − h12k21 + h21k12 − k11x (8)

h22t = −h22YY + 2h21h12Y + h22Y f22 + h12k21 − h21k12 − k22y. (9)

Gauge transformations, M → Mg = g−1Mg, preserving the leading order differential
operator part of M are, as before, 2 × 2 matrices of the form

g =
(
g1 0
0 g2

)
.

Gauge invariants are found to be, in addition to (12) and [12], those already known for L,

[12]f = f11 + f22 + ln

(
h12

h21

)
Y

(10)

[12]g = h12k21 − h21k12 + (12) ln

(
h12

h21

)
Y

(11)

[11] = k11 − 1
4f

2
11 − 1

2f11Y (12)

[22] = k22 + 1
4f

2
22 − 1

2f22Y . (13)

In fact [12]g = (12)x + (12)y. The geometrically invariant form of the evolution equations in
this case is

(12)t = 2

{
(12)

∫
[12] dy

}
x

+ 2

{
(12)

∫
[12] dx

}
y

(14)

[12]t = −2(12)xx − 2(12)yy +

{(∫
[12] dx

)2

+

(∫
[12] dy

)2

+
1

2
ln(12)xx +

1

2
ln(12)yy

+
1

4
ln(12)2x +

1

4
ln(12)2y

}
xy

. (15)

Obtaining these equations is by no means a simple calculation although in principle one
need only differentiate (12) and [12] with respect to t and use the equations (6)–(9). The
above is no more general than the most general equations considered in the literature [11].
The (2 + 1)-dimensional AKNS system, for which the choices h11 = h22 = 0, h12 = p and
h21 = q are conventionally made, has invariants (12) = pq and [12] = 1

2 log
(
p

q

)
xy

. Each
form is a family depending upon two arbitrary functions: p and q, or (12) and [12]. Under
these choices equations (14) and (15) become

ptq + pqt = q�p − p�q (16)

ptq − pqt = q�p + p�q + 2pqV (17)

where� is the two-dimensional Laplacian and Vxy = −2�(pq). These are indeed the AKNS
second-order flow. On the surface the invariant form has little to recommend it, being far more
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complex than the conventional form. It takes on a slightly less forbidding aspect if we define
new invariants:

� = 1
2 log(12) (18)

� = ∂−1
x ∂−1

y [12] (19)

yielding

�t = �� + 2∇� · ∇� (20)
�t = �� + ∇� · ∇� + ∇� · ∇� + V (21)
Vxy = −4e2�(�� + 2∇� · ∇�). (22)

Here ∇ is the gradient operator and (·) denotes the scalar product in two dimensions.
The reduction to the Davey–Stewartson equation p = q∗ corresponds to the invariants

(12) and [12] being real and purely imaginary, respectively, together with the restriction to
pure imaginary time: ∂t = i∂τ .

The theory may be further developed for matrix Lax operators where the h12 and h21 are
n×m andm× n rectangular and the h11 and h22 are n× n andm×m square matrices. Then
(12) and [12] are replaced by matrix covariants. This will be discussed in a further publication.

3. Laplace maps for second-order flows

The Laplace transformation is a map between Lax operators L and Lσ1 and Lσ2 satisfying

LDx = D
σ1
x L

σ1 (23)
LDy = Dσ2

y L
σ2 (24)

where Dx , Dσ1
x and Dy , Dσ2

y are distinct matrix operators with differential parts I∂x and I∂y
respectively, I being the unit 2 × 2 matrix. The notation Lσ1 , etc denotes the image of the
operator L under the map σ1, etc defined by (23), (24).

These relations lead to relations between the invariants for the Lax operators of the
following form:

(12)σ1 − (12) = −[12] − 1
2 ln(12)xy (25)

[12]σ1 − [12] = 1
2 ln((12)(12)σ1)xy (26)

(12)σ2 − (12) = [12] − 1
2 ln(12)xy (27)

[12]σ2 − [12] = − 1
2 ln((12)(12)σ2)xy . (28)

Now the question arises: if (12) and [12] satisfy the invariant form of the second-order
evolution equation, is it the case that (12)σ1 and [12]σ1 , etc also satisfy them? Differentiating
equation (23) with respect to t and using Lt + [L,M] = 0 and L

σ1
t + [Lσ1 ,Mσ1 ] = 0 one

obtains

L
(
Dt + DMσ1 − MD

) = (
D
σ1
t + D

σ1M
σ1 − MD

σ1
)
L
σ1 . (29)

This relation can be shown, with a lot of work, to be consistent with the relations (25). The
following diagram may then be said to commute:

L
σ1−−−−−−−−−−−→ L

σ
1

| || || || |↓ ↓
L̃

−−−−−−−−−−−→
σ̃1 (L̃)σ̃1 = (̃Lσ1).



The geometrically invariant form of evolution equations 2623

Equivalently

(L̃)σ̃1 = (̃Lσ1). (30)

Under the assumption that the time evolution map L → L̃ is well-defined, this establishes the
desirable property of the map σ1, that it maps the class of solutions of (14) to itself. Similar
considerations hold for σ2.

A further consideration applies to Toda lattice systems

−(12)n+1 + 2(12)n − (12)n−1 = ln(12)nxy (31)

which are simply the expression of the three term recurrence relationships between sequences
of invariants: (12)n = (12)σ

n
1 , etc. This lattice is integrable in the sense that σ1 and σ2 commute

in their action on the invariants which can be thought of as a flatness or Lax condition in the
x, y space. The commutation conditions (29) now strongly argue for the integrability of the
family of t-dependent lattices.

4. Invariant forms of third-order equations and their Laplace maps

Repeating the above for third-order flows leads to the complicated equations:

(12)t = (12)xxx − (12)yyy +

(
(12)

{
−3

∫
(12)x dy + 3

(∫
[12] dy

)2

− 3

4
log(12)2x

})
x

+

(
(12)

{
3
∫
(12)y dx − 3

(∫
[12] dx

)2

+
3

4
log(12)2y

})
y

(32)

[12]t = [12]xxx − [12]yyy − 3

{
[12]

∫
(12)x dy

}
x

+ 3

{
[12]

∫
(12)y dx

}
y

− 3 {b(12)}xx + 3 {c(12)}yy − 3 {b(12)x}x + 3
{
c(12)y

}
y

+

{
b3 − c3 +

3

2
(bax)x − 3

2
(cay)y +

3

4
ba2

x − 3

4
ca2

y

}
xy

(33)

where a = log(12), b = ∫
[12] dy and c = ∫

[12] dx.
Let us rewrite the relations (18) and (19) in the following forms:

(12) = e2�

[12] = �xy

and define a new potential U by

(12) = Uxy (34)

The equations (32) and (33) become, respectively,

�t = (
�xx +�2

x + 1
2A
)
x
− (

�yy +�2
y + 1

2B
)
y

+ A�x − B�y (35)

�t = (�xx + 3�x�x)x − (�yy + 3�y�y)y + �3
x + 3�x

(
�2
x − Uxx

)
−�3

y − 3�y

(
�2
y − Uyy

)− 3W (36)

where

A = �2
x + 3

(
�2
x − Uxx

)
B = �2

y + 3
(
�2
y − Uyy

)
Wxy = (�xUxy)xx − (�yUxy)yy .
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The geometric constraint (4):

C = 2[12](12)2 − (12)(12)xy + (12)x(12)y = 0

is respected by the flow in the sense thatCt vanishes when C vanishes, leading to the Novikov–
Veselov equation. To see this note that, using (12) = e2� and [12] = �xy ,

C = 2e4�(� −�)xy.

So let α = � −� then

αt = (
αxx − 3

2α
2
x + 3

2Uxx
)
x
− (

αyy − 3
2α

2
y + 3

2Uyy
)
y

+
(
α2
x − 3Uxx

)
αx

− (
α2
y − Uyy

)
αy − 3W.

But it is easy to show that the terms not involving the symbol α in this equation satisfy

(Uxxx − Uyyy − 2W)xy = 2
(
αx e2�)

xx
− 2

(
αy e2�)

yy
.

For C = 0 the two members of (32)–(33) reduce to single equation which can then be
written solely in terms of the one invariant (12):

(12)t = (12)xxx − (12)yyy − 3

(
(12)

∫
(12)x dy

)
x

+ 3

(
(12)

∫
(12)y dx

)
y

. (37)

The other familiar reduction is to the modified Novikov–Veselov equation: h11 = h22 = 0,
h12 = h21 = q . This is simply the geometric constraint [12] = 0. Equation (32) becomes
identically zero and the first yields

(12)t = (12)xxx − (12)yyy −
(
(12)

{
3
∫
(12)x dy +

3

4
log(12)2x

})
x

+

(
(12)

{
3
∫
(12)y dx +

3

4
log(12)2y

})
y

. (38)

As for the second-order flows the compatibility of these third-order flows with the Laplace
transformations is a matter of (an even longer) algebraic verification.

5. Conclusions and prospects

We have presented the lowest members of the (2 + 1)-dimensional AKNS hierarchy, written
in terms of the gauge invariants of their basic linear problem. In particular this allows a
geometric interpretation of reductions, the constraints themselves being relations between
gauge invariant objects.

Further, although we have not given the details of the calculations involved, we have also
shown that these flows are compatible with Laplace transformations which act naturally on
the invariants. We stress that this is the most important aspect of this study firstly because
it establishes the foundations of an algebraic solution procedure which is distinct from the
usual binary Darboux and Moutard maps and secondly, because it argues for the integrability
of time evolutions of Toda-like lattices. In respect of the first aspect it should be noted that
Laplace maps do not commute with reductions: σ1 and σ2 will generally take solutions of,
for example, the Novikov–Veselov equation, outside the constraint surface, C = 0. The
transformed solutions will satisfy the full (2 + 1)-dimensional AKNS system. Laplace maps
are not auto-Bäcklund transformations of reductions.

The complexity of the evolution equations written in these terms lends a quixotic flavour
to the enterprise and it is slightly puzzling that what is quite natural from one point of view
appears not to be so from the other. What is needed, if further progress and clarification are to
be made, is a cleaner and leaner machine for dealing with these flows. One possibility is the
Hamiltonian formulation [2, 5, 6].
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